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Average transverse pressure on shell walls
Shear load

Temperature distribution in shell
Tangential deflection of shell

Particular solution of tangential deflection
Transverse deflection of shell

Particular solution of transverse deflection

Coordinate perpendicular to plane of shell
(see Fig. 4)
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STRENGTH-DEFORMATION CONSIDERATIONS
OF AN INVOLUTE SHELL

by

A. H. Marchertas

ABSTRACT

An exploratory analysis is made of the behavior of a
thin, cylindrical, involute shell subjected to a steady-state
pressure and internal thermal gradients (which vary along
the involute). Five theoretical approaches are adapted to
the one-variable, involute shell problem, and solved explic-
itly for the dependent variables of internal loads and dis-
placements. Small-deflection theory is used throughout.

Each approachwas used to solve two numerical prob-
lems, one involving uniformtransverse pressure imposed on
the shell, and the other subjecting it toisothermal expansion.
In both problems, three boundary conditions were employed:
fixed, pinned, and what is referred toas rotated edges. Quan-
titative differences between the respective solutions are
discussed. Similar comparisons are made with available
experimental data.

I. INTRODUCTION

During the period from March 1962 ta September 1966, the fuel-
development program in support of the Argonne Advanced Research Reactor
(AARR)' was focussed on a fully enriched UO,-stainless steel cermet, flat-
plate core with an initial thermal output of 100 MW. In September 1966, a
decision was made to revise the AARR concept to accommodate a graded
U;0g-aluminum cermet, involute plate core. This core had been developed
at Oak Ridge National Laboratory (ORNL) for their High Flux Isotope Re-
actor (HFIR).

Although the HFIR core was operational and performing satisfacto-
rily at ORNL, the AARR core-design group at Argonne had no previous
experience with graded, involute fuel plates. Moreover, the structural limi-
tations of these plates under the adverse conditions anticipated in the AARR
were unknown. Therefore, a stress-analysis study was initiated, the pre-
liminary stages and results of which are described in this report.

Open literature on stress analysis of involute shells is essentially
nonexistent. Moreover, to this author's knowledge, the only published work
on involute fuel plates is predominantly experimentation performed in sup-
port of the HFIR core.?? This lack of information is understandable since
involute shapes are rarely encountered as structural elements. Therefore,



the analysis presented in this report pertains to a relatively simple involute
shell problem and is based on small-deflection theory with one variable,
that is, equilibrium conditions are established from the original shell geom-
etry and the loads made independent of the displacements during loading.
Also, the loads can be expressed in terms of integration constants to be
evaluated from the boundary conditions.

However, in the process of this simple analysis, it was observed that
variations existed in the final load-displacement relationships, and even
small-deflection theory with one variable did not provide a unique solution.
Since simple explicit resultant equations can be derived for the relevant
variables, five theoretical solutions were obtained for purposes of compar-
ison. The objectives here were: (1) to observe the typical variation between
the different solutions, and (2) if appreciable, to select the most promising
theory to be used in a more comprehensive analysis of the fuel plate. It was
believed that more complicated problems should be analyzed only after the
soundness of the simplest solution had been established.

Thus the simple involute shell problem treated in this report does
not imply a solution to the actual fuel plate. The environmental conditions
and plate composition are much more complicated than has been considered
here for the steady-state condition. However, the results afford a better
understanding of the involute plate behavior in general. This then may be
taken as the first step in the general stress analysis of the involute fuel plate.

II. ANALYTICAL DEVELOPMENT

OUTER CONTROL A. Description of HFIR
PLATE

INNER FUEL

The HFIR was designed pri-
marily to produce transuranium
isotopes for use in the USAEC
heavy-element research program.
As shown in Fig. 1, the'target rods
containing ***Pu and other transura-
nium isotopes are positioned verti-
cally within a 5-in.-dia hole that
forms the center of the reactor.
Radially outward from this hole,
the reactor is composed of two
concentric fuel elements; two, thin,
poison-bearing, concentric cylinders
which serve as control plates; a con-
centric beryllium reflector (approxi-

, mately 1 ft thick); and a water
reflector of effectively infinite thick-
ness. In the axial direction, the

Fig. 1. Partial Section of HFIR Core Assembly reactor is reflected by water.

BERYLLIUM
REFLECTOR:

©»wooD —-MOTVB>—




Fig. 2. Dimensional Characteristics
of HFIR Fuel Elements

With reference to the fuel region
(see Fig. 2)the inner element is 5.067 in.
in ID and 10.590 in. in OD; it contains
171 fuel plates. The outer element is
11.250 in. in ID and 17.134 in. in OD; it
contains 369 fuel plates. Inboth elements,
the plates are 24 in.long (active length =
20 in.) and 0.05 in. thick; they are bent in
the shape of an involute and welded to
circular cylinders to form constant
0.05-in.-thick coolant channels. Before
bending, the plates in the inner fuel ele-
ment are approximately 3.6 in. wide and
those in the outer fuel element are ap-
proximately 3.2 in. wide. As shown in
Fig. 3, each plate is of a sandwich-type
construction composed of U,;0g-Al cer-
met fuel clad with Type 6061 aluminum.
To reduce the radial peak-to-average
power density ratio, the fuel is nonuni-
formly loaded along the arc of the in-

volute. A burnable poison is included in the inner fuel element to flatten
the neutron flux further and to reduce the negative reactivity requirements
of the control plates. The control plates (see Fig. 1) are driven vertically
in opposite directions by mechanisms located beneath the reactor vessel.

Fig. 3
Partial Plan View of Inner and Outer Fuel
Elements Showing Distribution of Fuel and
Burnable Poison in Fuel Plates

INNER_FUEL ELEMENT

ANNER FUEL =LERET



During reactor operation, primary coolant enters the pressure
vessel at an elevation above the core, flows down through the core, and
exits beneath the core. The flowrate is about 16,000 gpm, of which
13,000 gpm flows through the fuel region, the remainder flowing through
the target, reflector, and control regions. The system is designed to
operate at an inlet pressure up to 1,000 psi; however, normal operation
at 100 MW requires an inlet pressure of 600 psi. Under these conditions,
the inlet temperature is 120°F, the outlet temperature is 164°F, and the
pressure drop through the core is 100 psi.

B. Nature of Imposed Loads

Operating loads on the fuel plates in the HFIR core are imposed by
thermal gradients and pressure. Thermal gradients are incurred along
the length of the plates by the variations of reactivity (graded fuel) inside
the plates and the degree to which coolant flow between adjacent plates af-
fects the situation. Pressure due to the expanding or contracting coolant
provides the external transverse pressure on the fuel plates. The bound-
aries also come into play insofar as they resist radial expansion or con-
traction of the plates.

In response to the imposed loads, adjacent fuel plates may flex to-
ward or away from each other, and the load parameters will change accord-
ingly. This is a coupled transient phenomena, and a true analytical
representation of all relevant effects is very difficult. Therefore, some
averaging must be done with the intent of approximating the important design
parameters. For the first approximation, changes in plate properties,
various localized effects, and transient loading in general can be neglected.
The superposition of these effects should be considered after the soundness
of simpler steady-state solutions has been ensured.

C. Equilibrium Equations

Equations of equilibrium conditions can be adapted to the one-
variable, involute shell problem from available expressions in the open
literature. Thus according to Timoshenko,* the equilibrium conditions, when
reduced to the one-variable case and corrected to the coordinate system
shown in Fig. 4, become

d
£ + Ne=8=pp(6); (1a)
M

qg " PR =0; ) (1b)
d—N— Q.20 (1c)



Substitution of Eq. (1c) into Eq. (la)
yields a second-order ordinary dif-
ferential equation with one unknown
dependent variable N:

-
N + 302 - -afp(6), (2)

for which the standard solution is

INVOLUTE -
GENERATING
CIRCLE
(INNER
BOUNDARY)

N = C, sin6 + C; cos 6 + Np. (3)

The membrane load Ny is
INVOLUTE E’Z

OUTER the particular solution of Eq. ) and
BOUNDARY  canbe represented mathematically by

Np = %{eiefe-mx(e) de

d6 where

ENLARGED SECTION
OF INVOLUTE

X(6) = -abp(8).

o+g—gd6
/ From Egs. (lc) and (3), the
a"‘*g—z 6 expression for the shear loadbecomes
yn M#Q!dé
26

d
= C, cos 6 - C; sinf + — (N).
Fig. 4. Model and Nomenclature Used in Analysis 8 1 . de ( P)

of the One-variable Involute Shell » (5)

Similarly, from Egs. (1b) and (5), the expression for the bending
moment is obtained by integration; this yields

M = C,a(cos 6 + 65sin6) - C,a(sin 6 - 6 cos 8) + C3 + Mp, (6)

where

Thus Egs. (3), (5), and (6) provide the expressions of loads in the
involute plate shown in Fig. 4. They are expressed in terms of constants
of integration and will be evaluated numerically from specified boundary
conditions.

11
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D. Load-deformation Relationships

These relationships are established with the aid of the so-called
Love-Kirchhoff assumption that normals to the middle surface remain
straight, normal, and inextensional during the deformation. Although many
authors in the literature on shells start with this assumption, they inevita-
bly end up with different final expressions. This undoubtedly is due to the
rigor of the subsequent analysis and consequent simplifications of the dif-
ferential equations. Koiter® states that most of the variations between the
different solutions are of the same order as those of the original assump-
tion. Nevertheless, it is interesting and important to observe the discrep-
ancies in terms of typical numerical differences. This is readily
accomplished by means of a one-variable case, and the involute shell is a
convenient configuration because it does not possess the often-encountered
property of symmetry.

Accordingly, the relationships between the loads and stresses are
given by
h/z

N = odz,

-h/z

r (7)
h/z
M = oz dz,
-h/z J
and the stress-strain relationship in a plane by
E
o = [pzle- (1+v)aT(z,6)]. (8)

Strain-displacements relations have been derived by Love® and, due
to the assumptions involved, are linear functions of the thickness coordinate z.

Typically,

(9)

1 w z
€T pa T I-(/o) e I-(z/p)

where K is the change in shell curvature and is expressed in a variety of
ways.
Change in shell curvature is the main variable discussed in subsge-

quent sections of this report. Also discussed is the assumption that the ratio
z/p is very much smaller than unity and is therefore neglected.*

*Omission of the ratio z/p is used by Novozhilov? as a criterion to differentiate thin shells as opposed to

thick shells.



E. Theoretical Formulations of Shell Curvature

Since the different equations of £ are the results of many approaches,
no advantage is gained by presenting the individual solutions in any specific
order. Thus the equations cited are given in the order in which they were
analyzed.

1. Timoshenko

Timoshenko's* approach in deriving the expression for change
in shell curvature is an extension of the method used in the study of ordi-
nary strength of materials. In addition, he utilizes the concept of inexten-
sibility and assumes that, during deformation, the radius of curvature is
reduced by the amount w. This approach yields

1 d(  dw
K = o7 d6(u+d6)' (10)

He also assumes that z/p << 1in Eq. (9). Therefore, on substituting Eq. (9)
into Eq. (8) and performing the integrations of Eq. (7), the expressions for
loads are given by

12D (du
5 e—— — - 2 11
ah6 (dG “’) e (Liag
D d dw
M = -Tig2 d9(u+d9) oy (11b)
where -
h
_ oE /2
Nn = e T(z,6) dz;
-h/z
OF h/z
My = T 2T (z,0) dz.
-h/z

Solving for u in Eq. (11b) and substituting it into Eq. (1la) results
in a second-order differential equation of the form

+sii_w__a_29_hi
Wwraer N D {lZa

(N+NT)+9(M+MT)]. (12)
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Substitution of Eqs. (3) and (6) into Eq. (12) and solving it yields the follow-
ing expression for transverse deflection of the shell:

3 2
w = 1% [(30—%)(5'1:19 -6 cos 6) - 26%(10 sin 6 - 36 cos 9)] Cy

2
8t [(30 -h—z)(cos 6 + 6 sin 6) - 26%(10 cos 6 +36 sin 9)] C,
a

* 8D
2
—%(92-2) Ca:+ Copin@ + Cg c059+wp, (13)
where
W= —l— ai? fe'iGX(G) de - e-if feieX(Q) de}
P Zi
and

2 2
o (G a—DQ[IhTa (Np +NT) + e(Mp+MT)jl.

The slope, or first derivative of w, also can be used to evaluate some of
the boundary conditions. On differentiation, Eq. (13) yields

dw a’ ( hz) . AR
38 - 18D [30-a2 (sin6 - B cos B +6% sin 0)
- 26%(30 sin O - 268 cos 6 + 362 sin 9)] C;
+L3 (30--13-2—)(c059 +6 sin6 +6% cos 6)
48D a® 5
- 26%(30 cos B +26 sin6 +36?% cos 9)] C,

Zaz 2] x 2] d )
- FGC3 + C4 cos @ - Cs sin +d—9(wp ‘ (14)

The tangential displacement u is related to w in Eq. (11b) and
ready for straightforward solution in conjunction with Eq. (6). This gives



1= _ia_ (30 hz)(ie-eco 6 +6% sin 8)
= - 98D - Jz)(sin s sin
+ 262(66 sin 6 - 226 cos O - 362 sin 6) - 384(sin®B - 6 cos 9)] C,
ad h?
- 285 (30--a—2)(cose + Bsin 6 +6% cos 0)
+ 26%(66 cos B +226 sin6 - 36% cos 6) - 384(cos 6 + 6 sin e)] C,
a’l > .
-Tﬁ(e-b)C3-C4cose +Cssin @ + Cq +up, (15)
where

d a? 2
up = -wpl-p J @ (Mp +MT) d6.

This completes the solution of the one-variable involute shell by
Timoshenko's formulation. Equations (3), (5), and (6) give the loads in

terms of the integration constants C,, C,, and C;. Equations (13), (14), and
(15) give the deflections in the same terms, and the additional constants Cy,
Cs, and C4. At this point, the solution is ready for numerical evaluation.
Since six constants of integration are to be evaluated, and there are two ends
of the shell, three boundary conditions must be specified for a complete solu-
tion of the problem. 0

2. Modified Timoshenko

The assumptions of Timoshenko in deriving his expression fork
are not really necessary if the definition of strain is used in the derivation.
As given by Timoshenko, the basic definition of the change in curvature is

.46 +4d6 1
ds +Ads p’

where s is the arc length, p the radius of curvature, and A the increment
involved. If the terms of the equation are expressed as follows:

d’w
AdB = 3% ds;

de = —l-ds;
P

Ads = € ds,

15
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substituted into the original equation, and the secondary terms are can-
celled, then

healliadahl g
“NEe lp  pidB\pidE R

which, on use of the binomial expansion, can be rewritten as

1 d (1 dw . 22 o
__p[1+a?(ﬁ’d_e)] (1-e+€-...) 5

The relationship between the strain and displacements, also

s
1

given by Timoshenko, is

1{du
)

Thus on performing the substitution, expanding, and finally neglecting sec-
ondary terms, an approximation for the change in curvature is given by

- ) -4 a6

Equation (16) can now be used, as before, to yield load-
displacement relationships. Hence, neglecting the terms z/p in Eq. (9),
using it in Eqs. (7) in conjunction with Eq. (16), and adapting the result to
the involute shell, we obtain

12D (du
s ahze(de-w) ‘TS (17a)
. Dfa(law) lfa_ N
® Tee s B[dG(G )45 W)] vl (17b)

1
Substitution of the term 5(%% - W) from Eq. (17a) into Eq. (17b) results in

an equation involving only w. Hence,

d—%(%%’) ) %Z[Thzia (N+NT) - 6(M+MT)]- (18)

On performing the indicated integration and multiplying the result by 6, the
following expression for the slope is obtained:



dw a6 ) h?
o = - F[?:(cosG + 6 sin 8) - (62- _IZ_az) cos 9] C,

a8 : : h? 2
+—D—[3(s1n9-6cos 9)—(62-1—g5 sin 8| C,
a?e?

d
AT Gy + a8C, +?1_6(WP)’ (19)

where

a® h?
wp = o 6 1z (NP+NT) - G(MP+MT)] dede.

Integration of Eq. (19) results in the transverse deflection formula

3 >
w = -%[(15 +l—2h:z)(cos 6 +6 sin 6) -6%(6 cos 6 + 6 sin 9)] C,

al h?
+—[(15 + —-) (sin® - 6 cos 6) - 6%(6 sin 6 - 6 cos 6)] C,

D 12a*
a’e? a6?
- B—D' C, +—2—C4+C5 +Wp. (20)

Equation (20) thus completes the relationshipd required for the boundary
value problem.

3. Koiter

In deriving his load-displacement relationships, Koiter® used a

method of differential geometry as formulated for this purpose by Reissner.®

In this manner the change of curvature became

. —:;c%[lp(ug%)] (21)

Thus on substituting Eq. (21) into Eq. (9) and neglecting the terms z/p, the
expressions for loads can be obtained as in the previous sections. In this
case

& 4
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~ 12D fidu (22a)
N = e s b
ahze(de W) ST
_ _Bodfa dw (22b)
M= - 22 g O e
a%6 6 [9 (“ ! de)] Mt

Substitution of the solution for Eq. (22a) into Eq. (22b) results in a second-

order differential equation for u:

bt 54] - S8 2B Sbval) -avena] e

Further substitution of Eqs. (3) and (6) into Eq. (23) and performance of
the indicated integrations result in an algebraic equation for u:

3
%= -Z—'De[l.r)(cos 6 + 6 sin 0) -6%(6 cos 6 + 6 sin 0)

h? :
+ ()a—_,_(cos 6 - 8sinB)| C,

3
+339[15(s'm8 - 6 cos ) - 62(6 sin6 - 6 cos B)

2

h ;
+6—a§(51n 6 +6 cos 9)] O

_z—zg(ez_e) C; +6C4 + Cs sin 6 + Cq cos 6 + up, (24)
where
b Zli{eie /e-iex(e) Py e-ie/eiex(e) de}
and

2 hZ d
X () = %{fi_a d—é[e(Np+NT)] - 9[6(Mp+MT) de}-

If the expression for w obtained frorh Eq. (22a) is differentiated and solved

in conjunction with Eq. (24), the transverse deflection formula becomes



w = -;—[15(cos 6+6 smG)-QZ(Z” cos O - 260 sin 6 + & cos @)

2
+—6h:2' (cos 6+ 6 sin 6 - 6% cos 9)]C,

3

+T:B[15(sin6 -0 cos B)-6%3sinB+26cos B+ 6% sin 6)

2

+gha—z(s'm 6-6 cos B -6 sin 6)] C,

3 2
- 32-(62-2)C; + G4 + Cs cos 6 - Cy sin 6 + wp (25)

where

ey - ahe
Yo = I8 (up) BV (Np +Nr).

Differentiation of Eq. (25) yields the slope of the elastic curve:

d %0
%= - Z—D'[‘?(c056+9 sin 6) - 6%(2 cos 6 - 6 sin 8)

hZ
- E;z—(cos 6 - 6 sin 6)] C,

3
+38_DQ [9(sin 6-6cos 6) - 6%(2 sin 8+ 6 cos 0)

2
- -(}%a? (sin 6 +6 cos 6)] C,
3a®
T 6C; - Cs sin 6 - C¢ cos 6 + 35 (Wp) (26)

This concludes the one-variable involute shell analysis using Koiter's
equations.

4. Flugge

The approach of Fligge® in deriving the expression for change
in shell curvature is similar to that of Timoshenko, except it excludes the

19
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assumption of inextensibility. Also, it does not provide for the component

in the change of curvature due to the tangential displacement u. Accord-
ingly, his expression is
s, d’w (27)
= p? ae?

In the further development of the load-displacement relations Flugge dc.>es
not assume that z/p<< 1. Thus, Eq. (9), as defined, is used in conjunction
with Eqs. (8) and (7) to obtain

D[12 (du_ L( d_w)] : 28
N = P[hz<d9 w) o7 w+dez NT; (28a)

2
M = -—Fl?—z(w+gTVZ)-MT, (28b)

where adjustment to proper sign convention is incorporated.

In the process of integrating Eq. (9) logarithmic terms were
encountered. In his development, Fluigge expanded the logarithms in powers
of h/p, and neglected the fifth and higher powers to yield Eqs. (28) for the
one-variable case. According to Flugge, neglecting the higher powers
meant only that the rigidity D in these formulas was slightly modified, the
differences being of the order hz/pz.

Equation (28b) is in terms of w alone and explicit solution for
w is obtained by direct integration of

d’w

aZeZ
w+59—2 = -—D—(M+MT). (29)

Thus on substituting Eq. (6) into Eq. (29) and solving it,

a!

o %[15(5&19 -6 cos 6) - 6%(10 sin 6 - 36 cos 6)] C,

3
+ 23'—4%[15(cos 0 + 0 sin ) - 6%(10 cos 6 + 36 sin 6)] C,

aZ

TR

(62-2) Cy + C4sin B + C5 cos 6 +wp, (30)

wp = ZL eiefe-iex(e) do - e-iefeiex(e) de}
: K

where



and

292
2 (Mp +MT).

xX(@®) = - D

The slope, or first derivative of w, becomes

a 3
d_‘g = 22_15 [15(sin 6 - 6 cos € - 6% sin 6) + 6*(2 cos 6 - 36 sin 6)] c,

3
a
+ 34D [15(cos 6 + 6 sin 6 - 62 cos 6) - 6%(2 sin6 + 36 cos 6)] C;
s P 8. C. iy 2
D 3 4 COs - Cg sin +E§(wp) (31)

Since the tangential displacement u is related to w by Eq. (28a), substi-
tuting Eq. (6) into it and solving result in

3
u = Z%-D [l77(sin 6 - 6cos 6) - 6%(81 sin 6 - 226 cos 6)

2
+ (39‘-2%— sin6| C,
a

3

+=2-|177(cos 6 + 6 sin 6) - 9%(81 cos 6 +226 sin 6)
24D

»

b 3
+ (39‘ -2 f;) cos e] Cs

iz—9(9z 6+ hz)c o 6 +Cs sin 6 + Cg + 32
" 3D - .2)C 4 COS 5 sin 6 T up: (32)

where

Equation (32) completes the expressions for the deformations of Flugge's
formulation and the boundary value problem is ready for solution.

5. Millex

In deriving the relationships between loads and displacements
Miller!® used the differential geometry and obtained a somewhat different

expression for k:
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1[4 (Law)_ udp (33)
i p[de(pde) ?de]'

ms in Eq. (9) and integrates

Similar to Flugge, Miller also retains all ter ‘
d-displacement relations

the complete expression. As a result, the loa

become
_ 12D Jdu N _d_(lfl‘_”) e (34a
AR T [“"e+9d9 6 a6 1 )
PR 7 1 (U I, i(léﬂ) M (34b
o e hzc[w ot %as\6 ae T )
where

PR Bl (2a6+h)
C 1 5 1In Cre o

When Eq. (34b) is solved for u and substituted into Eq. (342);

d(, ,dw)_ b Lo 0 il
d9(w+d97') ol v [a(N+NT) "% (”c*a a6 'c*)(M+MT)
{8
+ C* a6 (M+MT)]. (35)

Equation (35) is in terms of trigonometric and logarithmic
functions, and evaluation of u as before becomes almost impossible. How-
ever, the logarithmic functions can be approximated by a few terms of
infinite expansions, as was done by Fligge in his derivations. Whenadapted
to the individual logarithmic terms of Eq. (35), these approximations

become*
g dc* 1 36a%6% T 12a2%6%
tGvide "CF- m >t coE-l-TwEo (36)

On introduction of these approximations, Eq. (35) becomes

2 & 29
i(w dw)= h [a(N+NT)—36a (M +MT)

N ditd leD he
1za262) d
(1‘ ) ag M+MT) |, (37)

*The expressions for the regular logarithmic expansions have been modified slightly to make the limiting
value of the quantity (at 8 = 0) correspond to unity.
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which yields

36
W = -aT-D [3(5 sin 6 - 6 cos 6) + 8%(2 sin 6 - 6 cos 6)
h?
- —6az(sin 6- 6cos B)] C,y

3
6
-%[3(5 cos 6+ 6 sin 6) + 8%(2 cos 6 + O sin )

h2
-~ 53 (cos 6 + 68 sin 8)] C,

332
22 (92-2) Cy+ C4 + Cs 5in 6 + Cg cos 6 + wp, (38)
2D P
where
wg = El-i{eiefe-iexw) a6 - e-if [eiex(e) de}
and
x(e) = ——f —— (Np+NT) - 36(Mp + M)
h2
(12 s - 9) 36 (Mp+MT)]d6
The slope of the elastic curve becomes
dw _ a3 . - e .
- e -83[3(5 sin 6 + 36 cos 0 + 362 sin 8) -6*(2 cos 6 - 6 sin 6)

2

6Laz (sin 8 - 6 cos 6 +6% sin 8)] C,

3
- Eaﬁ [3(5 cos 6 - 36 sin ® +36% cos 8) + 6%(2 sin 6+ B cos 6)

2
- élla'z (cos® + 6sinb +6% cos 6)] C;

3a%6
D

5 d
C; + Cs cos 8 - C¢ sin e+ 36 (wp). (39)
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The tangential displacement u is obtained by using Eq. (34b) in conjunction

with Eq. (36). Subsequent integration gives
3 .
N Ea_D [15(sin 6 - 6 cos 6 - 62 sin ) + 6%(6 cos 6 + 6sin 6)

2
- %(sin 6 +36 cos 6 + 6 sin 6)] Cy

3
+;‘—D [15(cos 6 + 6 sin 6 - 6% cos ) - 6°(6 sin 6 - 6 cos 6)

2
= &(cos 6 -36 sinB +6% cos 6)] C,

2g h? y
-aZ—D(62-6+6a—Z)C3+9C4—C5c059+C651n9+up, (40)
where
d e ( h? z)
= - = - — = 4
up = 6X(6) - 35(wp) - 5 \ iz (Mp + M)

Equation (40) completes the one-variable involute shell analysis
using Miller's formulation.

In summary, Table 1 lists the five equations for curvature k£ as
adapted to the one-variable involute shell.

TABLE |

EQUATIONS OF CURVATURE K USED IN DERIVING LOAD-
DISPLACEMENT RELATIONS IN THE ONE-VARIABLE
INVOLUTE SHELL

FORMULATION K
2
FLUGGE pLz —z‘:
TER oI 2 '_(u,ﬂl_)
L p d8 | p d
[ d vy
MILLER P[“(P d ) Pz“dg]
MODIFIED i ﬂ_(_‘_d_'i)__'_(gi.w)
TIMOSHENKO pde\p do p \dé
= dw
TIMOSHENKO ;’3 10 (U* de)
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III. NUMERICAL COMPARISON OF SOLUTIONS

Two simple numerical examples were employed for the purpose of
comparing the individual formulations, using the one-variable mathematical
model. In the first example, the shell was acted upon by a constant, uni-
form, transverse pressure with no thermal gradients. In the second exam-
ple, the shell was subjected to a constant isothermal expansion with no
applied pressure between the stationary boundaries. Table 2 lists, in terms
of constant p and T, the particular solutions of the various differential
equations derived in Sect. II.

Both examples were subdivided into three parts, each distinguished
by the type of boundary conditions assumed. The first boundary condition,
usually referred to as the pinned edges, is mathematically represented by

W|e=o Sty |6=0 = 0. (41

M = — =N =
o= = ™ lo=y = *lo=v lo=y
The second, identified as the fixed boundary condition, is represented by

= gﬂ =
p=y db|6=y

i .
do |e=0 ~ 6=y

= = = . 4
¥l 6=0 u|9=o . : (42)

The third boundary condition treated was the so-called "rotated" edges.
Here, both ends of the shell are fixed in the regular sense, but are allowed
to rotate relative to each other and with respect to the center of the invo-
lute circle (see Fig. 4). Mathematically, this boundary condition is repre-
sented by

.

W dw

6=0 de|9=°:“|e=w"”wle=w=Qle=¢"””|e=w= 6|6=w=°
(43)

o

W =
lS:o L

The dimensional, material, and load parameters used in the sample

solutions were:

A E = 1 x 107 psi

b =-0:039 in. #o=10.3

¥ = 1.636 rad @ = 1.3x 1073 °F}
p = 10.51 psi T = 100°F

In the first boundary conditions considered, T was assumed to be zero. In
the second, p was assumed to be zero. These input parameters were se-
lected to facilitate comparison between analysis and experiment as described
later in this report (see Sect. V).



TABLE 2
PARTICULAR SOLUTIONS OF THE DIFFERENTIAL EQUATIONS

SYMBOL

Np

iw
d6 "

FORMULATION &
risce | -ap | ~atpst | S (s%-126% +20) 268 g2 o) L0 [Lo-6%{ar 25 ) 24|« Soa(i e
omen o5 (0% e2e) o K (0°-2)] - sa{1+v)10 | S22 [o(6%-0) 2] i)y 7‘.2[': 208t )- £ oa(io)r
e %8 564 - 08 20- 21 (6°-2 )]...,.(..,)m T (o0 30-dos) oalir)r | [ 200 0= (6-4) 5] o))
R s 08126212 )+ Laa(io)16° 005t 1), af1a)rot ar %‘.(g.g):’z] Loa(is)re? (s22)
— Loee*-(6) (e 29 oafv)re P08 (1292724 22) - qafjn)r

‘%0%9 [w* (Bz- 20) + 5(72— %;—)] + uﬂ(' *V)Y
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Each of Egs. (41) through (43) provides a total of six conditions--
three for eachend of the shell. When the relevant equations of Sect. II are
subjected to these conditions, six simultaneous algebraic equations result.
Each equation was programmed for a matrix solution in which the individual
coefficients of the matrix could be put in separately. The combined pro-
grams thus provide numerical values of the dependent variables w, u, N, M,
and Q at different values of the independent variable 6 along the length of
the shell as the final output. This permits the plotting of each of them, as
in Figs. 5 through 10.

These graphs show the relative variations in each parameter for
the five theoretical solutions evaluated. In most solutions, the variation of
one function with the independent variable € is quite similar (amplitude
provides the pertinent source of comparison). The few exceptions are in-
stances where the slope of the function varies with 8 from solution to solu-
tion and thus the configuration is not exactly the same. A good illustration
of this is the displacement configuration for the pinned-edge-boundary
condition in both examples. The tangential displacement for the isothermal
load condition, in particular, exhibits the most marked deviation in
configuration.

Theoretically, the more rigorous the analytical approach, the more
accurate the results, other conditions remaining equal. However, the valid-
ity of this statement depends also on the accuracy of the original assump-
tions. Koiter® points out that most of the refinements encountered in shell
literature are of the same order of magnitude as are the errors attributable
to the basic assumptions. Therefore, he presents a set of equations for the
theory of shells in as simple a form as is co‘nsistent with the original as-
sumptions. In addition, at least for the one-variable case, his solution coin-
cides with that of Love,® Novoshilov,7 Reisser,? and Sanders,!' to name a
few. It is on this basis that Koiter's solution was chosen as a reference for
numerical comparison with the other four solutions.

Table 3 lists for both sample problems the percentage of deviations
at maximum values of the dependent variables employed in the solutions.
Where appearing, the minus sign indicates the value is less than that given
in the Koiter solution. (Accuracy of the tabulated values is within 0.1%.)
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TABLE 3. Deviations (in %) of Four Solutions of Sample Problems from Results Obtained with Koiter's Equations

Transverse Tangential Membrane Bending SLf;::r
Deflection Deflection Load Moment 0
(w) (u) (N) (M)
Method PES FES RES PES FES RES PES FES RES PES FES RES PES  FES RES
(A) Shell Acted Upon by a Uniform Transverse Pressure
Fliigge 120 -89 -42 228 -207 -281 -03 25 63 -09 251 300 -03 54 = &3
Miller - 01 0.2 0.0 00 0.0 0.0 00 00 01 01 00 00 -01 -01 0.0
Mo THBEhenks =& 33" = L0 R5 + =42 * = 13- 5~ 27 005 056N 5T 8= 04 -19 -40 -02 -04 0.1

Timoshenko U5 %=1 <131 B9 -8 ~131 =03 =26 63 -08 215 300 -03 67 - 65

(B) Shell Restrained from Isothermal Expansion

Fliigge =171 0.2 200 4TS t0E 20 -50 220 1.0 -500 564 184 -50.1 2.7 101
Miller - 12 0.6 &1 - Ll -~ U8 38 -15 38 -23 -149 105 -9 -b.2 42 -5
Mod. Timoshenko - 1.4 0.9 56, =07 =17 54 -13 80 -33 -128 138 -69.0 -128 B85 -3l
Timoshenko -16.6 0.0 02 439 -03 00 -35 197 25 -348 49.0 507 -39 23 246
Legend

PES - Pinned end supports.
FES - Fixed end supports.
RES - Rotated end supports.

IV. CONCLUDING REMARKS

At the outset, it is emphasized that the five solutions analyzed do
not represent the entire spectrum of applicable solutions to all problems
of involute plates. Neither is it maintained that the numerical evaluations,
in any way, reflect the veracity of a particular theory treated. At best,
the given solutions provide what may be called a typical variation in re-
sults, depending on the load and boundary conditions employed. If any con-
clusion could be drawn from the comparison it probably would be that, in
general, the results obtained using Timoshenko's and Flugge's formulations
are similar, and those obtained using the other three theories are also
similar. A more meaningful comparison of the formulations would necessi-
tate a thorough parametric study, with complete experimental support.

However, it should be pointed out that in the one-variable shell
problem where at one end p = 0, retention of the z/p terms (as compared
with unity) did not reflect any noticeable difference in the final results.

For example, Fligge's or Miller's equations, which did not neglect the z/p
terms, provided results in close agreement with those rendered by theories
which did. These observations suggest that for flexural analysis of the
two-variable, cylindrical involute shell problem, the simplest theory, say
the linear shell theory of Koiter or Novozhilov, should be used.

An important byproduct of this study may well be the simple method
employed in solving the pertinent differential equations. This closed-form
solution may be used for quantitative comparisons, since the one-
dimensional model still retains many of the relevant characteristics of

interest.



V. COMPARISON WITH EXPERIMENTAL DATA

Oftentimes experimental data are available for purposes of compari-
son with analytical solutions, but may not always completely represent the
study at hand. Such is the case with the two sets of data furnished by the
staff at ORNL, and allowances must be made accordingly.

The first set of data* consisted of displacement measurements on a
simulated involute plate specimen, with pinned (or grooved) ends, subjectedto
uniform transverse pressures. (The shape of the test specimen was not a
true involute since the ends had straight extensions, each about 1/8 in. long.)
More specifically, the specimen was fabricated of Type 6061-T6 aluminum
sheet, 0.039 in. thick, the cord of which was 3.372 in. long. Pressures of
3.63, 5.60, 8.54, and 10.51 psi were applied, and corresponding displacements
were measured at seven stations by dial indicators positioned perpendicular
to the cord of the involute. The equivalent analytical shape used for com-
parison is described by the input conditions on page 25.

The results of this comparison are summarized and replotted in
Fig. 11. This is essentially a two-dimensional plot, where the experimental
transverse and tangential displacements have been accounted for. The dis-
placement scale also was normalized by plotting w/p and u/p, where p is
the test pressure. This normalization permitted inclusion of all pressure re-
sults on the same graph. Since the analytical solutions can be divided into

a
N
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Fig. 11. Comparison of Experimental Data with Analytical Results for
Shell with Pinned Edges and Subjected to Uniform Pressure

*Personal communication from T. G. Chapman, ORNL.
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two groups insofar as agreement between them is concerned, Koiter's and
Timoshenko's solutions have been plotted for comparison. Their disagree-
ment with the experimental results is quite apparent; however, of the two
solutions, that rendered by Koiter's formulation is in somewhat closer

agrement with experiment.

The second set of data was derived by Cheverton and Kelley,3 who
conducted a series of experiments on plates of the HFIR outer fuel element.
Structurally, each test specimen was a cylindrical, aluminum involute
plate, 0.050 in. thick, with a generating circle of 5.873 in., a true active
width (arc length) of 2.944 in., and an axial length of 24 in.

Numerous variables, such as types of material, restraints of the

side supports, and type of load, were considered in these tests. One of the
test objectives was to reproduce, as closely as possible, the true structural
loads and restraints on the plates. For example, the higher temperature
environment of the plate, as compared to its restraining boundaries, was
simulated by effectively imparting an axial shear load on the sides of the
plate. Figure 12 shows the maximum transverse deflection incurred along
the cylinder axis under these conditions. In tests where pressure was to

be applied to the plate surface, the entire perimeter of the plate was sealed.
The mode of sealing prevented the ends of the plates from deforming under
load, as they would under actual operating conditions.
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Fig. 12. Typical Deformation along Cylindrical Axis of a Free-ended Involute
Plate Caused by a Uniform Change in Temperature (80-400°F)

In view of the multivariable nature of the tests, it was apparent
that the results could not be closely simulated by a one-variable analytical
model. However, it was believed that a reasonable comparison could be
made with displacements measured along the involute and at the midlength
of the plates (see Fig. 12). Accordingly, data derived from conditions of



fixed edges of the plate were selected. In these tests, the plate tempera-
ture was increased from 80 to 400°F, with no pressure differential; at
400°F, pressure was applied to the plate surface.

The results of the comparisons are plotted in Figs. 13 to 15. Here
again, the analytical results were derived using the Timoshenko and Koiter
formulations, and the physical properties of aluminum at elevated tem-
peratures as published in Sect. III of the ASME Boiler and Pressure Vessel
Code. Figure 13 shows the plate deformation caused by the isothermal
temperature change from 80 to 400°F. The configuration of deformation is
similar to that determined analytically, but the quantitative values do not
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Fig. 13. Deformation of Involute Plate Caused by an
Isothermal Temperature Change (80-400°F)

ANGULAR COORDINATE (8),rad
02 04 0.6 08 10 0.02
T T 7

\

i \ {-002
ol p-

o2

UNLOADED PLATE

'
e e i

TRANSVERSE DEFLECTION (w), in.

03

Vi L 1 1 A
04 06 08
ANGULAR COORDINATE (8), rod

Fig. 14. Plate Deformation Caused by an Isothermal Temperature
Change (80-400°F) and a Uniform Pressure of 30 psi
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Fig. 15. Plate Deformation Caused by a Uniform 60 psi Pressure
at a Temperature of 400°F

agree well. The same trends of the total deformation occur in Fig. 14,
where a 30-psi pressure has been applied to the concave side of the
temperature-deformed plate. Figure 15 shows the plate deformation due
only to a uniform transverse pressure of 60 psi applied to the plate at a
temperature of 400°F. Here again the plate deformation rendered by ex-
periment and analysis is similar in configuration but not in magnitude.

It is apparent from these figures that analysis predicts deforma-
tions that consistently differ by a factor of 2 from those determined experi-
mentally. Of particular importance is the fact that the analytically derived
deformations due to transverse pressure (see Fig. 15) are nonconservative:
predicted plate deflections are lower than those measured experimentally.
Moreover, this is the only instance where the experimental data show the
analysis to be nonconservative. The deviation cannot be explained by
simply relaxing some of the restraints imposed at the plate boundaries,
since this would have the opposite effect. A more comprehensive investi-
gation may provide a plausible explanation.
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